3226

Based on my statistics summary from my dataset, l fitted logistic regression as seen below but was told is wrong. since l am not using all the variable i have to use sub-setting or other means, please help me out. Thanks and l am ready to rate you

Dependent Variable: Employed

Independent variables ( Race.Ethnicity + Age + Educational.Attainment+Gender)

Save your time - order a paper!

Get your paper written from scratch within the tight deadline. Our service is a reliable solution to all your troubles. Place an order on any task and we will take care of it. You won’t have to worry about the quality and deadlines

Order Paper Now

Table Statistic Description Summary

##
## ===================================================================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## —————————————————————————————————
## Age 64,999 41.689 13.734 18 30 54 64
## Earnings.Past.12.Months 64,999 29,776.370 45,915.830 0 0 42,000 577,000
## Usual.Weekly.Hours 48,868 38.513 12.847 1.000 35.000 42.000 99.000
## Female 64,999 0.508 0.500 0 0 1 1
## Married 64,999 0.531 0.499 0 0 1 1
## No.High.School.Degree 64,999 0.123 0.329 0 0 0 1
## High.School.Degree.or.GED 64,999 0.276 0.447 0 0 1 1
## Some.College 64,999 0.248 0.432 0 0 0 1
## Associates.Degree 64,999 0.081 0.272 0 0 0 1
## Bachelors.Degree 64,999 0.174 0.379 0 0 0 1
## Masters.Degree 64,999 0.070 0.254 0 0 0 1
## Professional.Degree 64,999 0.018 0.133 0 0 0 1
## Doctorate 64,999 0.010 0.101 0 0 0 1
## Employed 64,999 0.847 0.360 0 1 1 1
## White 64,999 0.675 0.468 0 0 1 1
## Black 64,999 0.111 0.314 0 0 0 1
## American.Indian.or.Native.American 64,999 0.010 0.098 0 0 0 1
## Asian 64,999 0.051 0.219 0 0 0 1
## Hawaiian.or.Pacific.Islander 64,999 0.001 0.033 0 0 0 1
## Other.Race 64,999 0.001 0.033 0 0 0 1
## Biracial 64,999 0.016 0.126 0 0 0 1
## Hispanic 64,999 0.136 0.342 0 0 0 1
## Worked.40..Weeks.During.Past.12.Months 64,999 0.609 0.488 0 0 1 1
## Worked.35..Hours.in.a.Typical.Week 64,999 0.572 0.495 0 0 1 1
## —————————————————————————————————

Logistic model

##
## Call:
## glm(formula = Employed ~ Race.Ethnicity + Age + Educational.Attainment,
## family = binomial(link = logit), data = t)
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 2.3410222 0.0746680 31.352
## Race.EthnicityBiracial 0.3534648 0.0996939 3.546
## Race.EthnicityBlack 0.0473607 0.0558471 0.848
## Race.EthnicityHawaiian 0.4059376 0.3252117 1.248
## Race.EthnicityHispanic 0.5171397 0.0560812 9.221
## Race.EthnicityNative American -0.1837606 0.1019250 -1.803
## Race.EthnicityOther Race 0.2926580 0.3312788 0.883
## Race.EthnicityWhite 0.5415397 0.0497194 10.892
## Age -0.0126019 0.0008256 -15.264
## Educational.AttainmentBachelors Degree 0.2509170 0.0588308 4.265
## Educational.AttainmentDoctorate 1.0200194 0.2023725 5.040
## Educational.AttainmentHigh School Degree -0.7639307 0.0506752 -15.075
## Educational.AttainmentMasters Degree 0.4165664 0.0754665 5.520
## Educational.AttainmentNo High School Degree -1.5440954 0.0533336 -28.952
## Educational.AttainmentProfessional Degree 1.0395101 0.1608529 6.462
## Educational.AttainmentSome College -0.4100751 0.0523632 -7.831
#